新疆时时彩网上开户

新疆时时彩网上开户1

  这样我们才能够理解,为什么一个现代小学生就可以轻松地理解“负数”的概念,而古代最伟大的数学家却理解不了。这是因为思考的方向完全不同,他们的出发点是现实的事物及其关系,而我们的出发点的是符号及其运算规则。

  在“代数之父”花拉子米那里,他的代数学著作通篇都是文字与图形,并没有使用符号来表达的式子,甚至连他自己引入的阿拉伯数字,也极少使用。所以韦达的工作,还建立在对缩写符号的普遍应用之上。这一工作一方面是基于对古希腊数学家丢番图著作的重新阐释,另一方面也依赖于欧洲中世纪以来商人传统下各种运算符号的发明和普及。而韦达作为科学家,并不像商人那样,只是把缩写符号当作一种便利的手段,他追求的是科学的目标:普遍性。因此他进一步发扬了符号的应用,完成了最后这临门一脚——用符号来表示已知数。,  但是,为什么这样一个简单的推导,竟要等到16世纪才由韦达完成呢?古代的数学家难道不会解方程吗?

  比如负数、无理数、虚数之类的东西,它们作为抽象符号,被抽象的那个现实的事物究竟是什么呢?这些问题直到20世纪也没有完全争论清楚。然而在符号代数的视野下,符号不再总是被用来指代一个具体的量,而是可以指代一个“一般的数”。数本身没有任何具体性,而是完全中性的,没有单位或量纲。于是,人们可以把某个方程究竟有什么现实意义这一问题搁置一边,而专注于演算符号之间的运算规则。,  用符号来表示未知数的做法早已有之,但用符号指代已知量的做法显得更曲折一些。,  胡翌霖

  胡翌霖,  比如负数、无理数、虚数之类的东西,它们作为抽象符号,被抽象的那个现实的事物究竟是什么呢?这些问题直到20世纪也没有完全争论清楚。然而在符号代数的视野下,符号不再总是被用来指代一个具体的量,而是可以指代一个“一般的数”。数本身没有任何具体性,而是完全中性的,没有单位或量纲。于是,人们可以把某个方程究竟有什么现实意义这一问题搁置一边,而专注于演算符号之间的运算规则。,  (作者系清华大学科技史系助理教授)

  广义上讲,早在欧几里德时,就会用ab表示a点到b点之间的线段,在中世纪数学家那里,有时会更简略地用b表示线段AB。但线段a和系数a还不是一回事,用a表示一条线段,因为前者是一个具体的对象,或者说是一段有确定长度的量,而后者是一个纯粹的“数”,没有单位的“数”。于是这里我们就遇到了韦达工作的又一项标志性的意义:把古希腊以来数学家坚持明确区分的数与量给混同了,并把量的同类性原则消解掉了。,北京赛车彩票哪里玩  比如负数、无理数、虚数之类的东西,它们作为抽象符号,被抽象的那个现实的事物究竟是什么呢?这些问题直到20世纪也没有完全争论清楚。然而在符号代数的视野下,符号不再总是被用来指代一个具体的量,而是可以指代一个“一般的数”。数本身没有任何具体性,而是完全中性的,没有单位或量纲。于是,人们可以把某个方程究竟有什么现实意义这一问题搁置一边,而专注于演算符号之间的运算规则。,  这样我们才能够理解,为什么一个现代小学生就可以轻松地理解“负数”的概念,而古代最伟大的数学家却理解不了。这是因为思考的方向完全不同,他们的出发点是现实的事物及其关系,而我们的出发点的是符号及其运算规则。

  韦达定理的推导似乎并不难,事实上一个学过初学代数的中学生就足以完成这一推导——对于任意形如ax2+bx+c=0的方程,只要把方程左边化为(x-x1)(x-x2)=0的形式,x1和x2就是两个根了,说白了也就是几步四则运算罢了。,,  用符号来表示未知数的做法早已有之,但用符号指代已知量的做法显得更曲折一些。

责任编辑:张永宪

特别声明:昭通日报社所属媒体昭通日报、昭通新闻网、昭通日报微信公众号(id:hdwk2158200)、掌上昭通app等平台的所有内容,以及本网中特有的图形、标志、页面风格、编排方式,任何媒体、网站或个人未经本网书面授权不得复制、转载、发布,违者将依法追究责任。联系电话:0870-2128964 13649675885。